Exercise 7.8.4

ODEs of the form $y=x y^{\prime}+f\left(y^{\prime}\right)$ are known as Clairaut equations. The first step in solving an equation of this type is to differentiate it, yielding

$$
y^{\prime}=y^{\prime}+x y^{\prime \prime}+f^{\prime}\left(y^{\prime}\right) y^{\prime \prime}, \quad \text { or } \quad y^{\prime \prime}\left(x+f^{\prime}\left(y^{\prime}\right)\right)=0 .
$$

Solutions may therefore be obtained both from $y^{\prime \prime}=0$ and from $f^{\prime}\left(y^{\prime}\right)=-x$. The so-called general solution comes from $y^{\prime \prime}=0$. For $f\left(y^{\prime}\right)=\left(y^{\prime}\right)^{2}$,
(a) Obtain the general solution (note that it contains a single constant).
(b) Obtain the so-called singular solution from $f^{\prime}\left(y^{\prime}\right)=-x$. By substituting back into the original ODE show that this singular solution contains no adjustable constants.

Note. The singular solution is the envelope of the general solutions.

Solution

Suppose that $f\left(y^{\prime}\right)=\left(y^{\prime}\right)^{2}$. Then the general Clairaut equation becomes

$$
\begin{equation*}
y=x y^{\prime}+\left(y^{\prime}\right)^{2} . \tag{1}
\end{equation*}
$$

Differentiate both sides with respect to x.

$$
y^{\prime}=y^{\prime}+x y^{\prime \prime}+2\left(y^{\prime}\right) y^{\prime \prime}
$$

Subtract both sides by y^{\prime}.

$$
0=x y^{\prime \prime}+2 y^{\prime} y^{\prime \prime}
$$

Factor $y^{\prime \prime}$.

$$
0=y^{\prime \prime}\left(x+2 y^{\prime}\right)
$$

By the zero product theorem,

$$
\begin{array}{lll}
y^{\prime \prime}=0 & \text { or } & x+2 y^{\prime}=0 \\
y^{\prime}=A & \text { or } & y^{\prime}=-\frac{x}{2} \\
y(x)=A x+B & \text { or } & y(x)=-\frac{x^{2}}{4}+C .
\end{array}
$$

Substitute these solutions back into equation (1) to determine the constants.

$$
\begin{array}{ll}
(A x+B)=x(A)+(A)^{2} & \left(-\frac{x^{2}}{4}+C\right)=x\left(-\frac{x}{2}\right)+\left(-\frac{x}{2}\right)^{2} \\
B=A^{2} & C=0
\end{array}
$$

Therefore, the general and singular solutions are, respectively,

$$
y(x)=A(x+A) \quad \text { and } \quad y(x)=-\frac{x^{2}}{4} .
$$

The singular solution contains no adjustable constant.

Below is a plot of the general solution for several values of A and the singular solution.

We see that the value of A determines where the general solution is tangent to the singular solution. The latter therefore acts as an envelope.

